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Master-Equations for the Study of Decoherence
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Different structures of master-equation used for the description of decoherence of a mi-
crosystem interacting through collisions with a surrounding environment are considered
and compared. These results are connected to the general expression of the generator
of a quantum dynamical semigroup in presence of translation invariance recently found
by Holevo.
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1. INTRODUCTION

In recent times the word decoherence has become quite fashionable in order to
describe a range of utterly different physical situations, which however all exhibit
a common qualitative feature: a quantum system, due to its unavoidably imperfect
isolation from the surrounding environment, shows in its dynamical evolution
the suppression of typical quantum coherence properties, such as interference
capability. Although the subject is in rapid evolution, a nice recent presentation of
the field, anchored to the robust background of the theoretical description of open
quantum systems, can be found in (Breuer and Petruccione, 2002).

The basic ideas are actually very old and as it was recently stressed in (Dubé
and Stamp, 2001) can be essentially traced back to the first studies on the mea-
surement problem in quantum mechanics in the 50’s. These studies in which the
main concepts related to decoherence already appeared has led by now to relevant
improvements in the formulation of quantum mechanics, going beyond Dirac’s
presentation and leading to the new concept of effect, positive operator valued
measure, operation and instrument, also disvealing most fruitful and interesting
connections with the theory of stochastic processes; it appears indeed that many
useful clues in studying the theory of quantum systems can be obtained from clas-
sical probability theory, rather than from the usual correspondence with classical
mechanics. These more advanced and flexible tools in the description of quantum
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systems and their dynamics are by now extensively used in quantum information
and communication theory.

Indeed the common root between decoherence and the measurement prob-
lem, that is the interaction between a microsystem and a macrosystem, obviously
indicates that concepts, techniques and tools originating in the realm of founda-
tions of quantum mechanics will prove an essential ingredient in the actual study
of decoherence. In this respect a relevant distinction is to be pointed out. One
thing is the loss of quantum coherence for a microsystem interacting with some
macrosystem, another thing the classical behavior which macrosystems actually
exhibit, thus allowing for an objective description. Though the latter phenomenon
can be thought of as a consequence of the first, enhanced by the huge number
of degrees of freedom pertaining to a macrosystem, the two physical situations
are actually very different and it might well be the case that different approaches
should be devised, the connection being not necessarily trivial as is often conjec-
tured or implicitly assumed. In particular the description of macrosystems should
rely on a suitable development of quantum statistical mechanics, which extended
to non-equilibrium situations could allow for the appearance of a classical behav-
ior for a subset of observables, possibly giving useful insights in the description
of decoherence for a microsystem (Lanz et al., 2000, 2002). Since the connection
between the phenomenon of decoherence and the measurement problem has been
touched upon, it is important to stress that decoherence is not a solution to the
aforementioned problem. This incorrect viewpoint is often implicitly or explic-
itly assumed, however as recently most clearly shown in the standard framework
of Dirac’s formulation of quantum mechanics (Bassi and Ghirardi, 2000), even
supposing that due to interaction with the environment the combined system com-
posed by microsystem and apparatus would end up in a statistical mixture with
respect to some pointer basis, there is no reason for this basis to be factorisable
and typically in the case of a measurement apparatus the combined system will
not exhibit macroscopically distinct states.

The reason for the recent renewal of interest in decoherence is twofold: first
enormous experimental progress has been made in dealing in a controlled way with
microsystem, also engineering superposition states which might be particularly
sensitive to decoherence effects, and second decoherence is perhaps the worst en-
emy when it comes to the physical implementation of quantum computers. These
two major motivations push current research work in the two related directions
of both quantitatively understanding and avoiding decoherence. Up to now most
theoretical models of decoherence have been chosen rather because of their sol-
ubility, than because of their adherence to realistic physical models. The very
universality which is often expected and advocated for the phenomenon actually
relies on suitable modeling for reservoir and interaction, so that specific properties
of system, bath and interaction should be of relevance in explaining the sensitivity
to the different environmental couplings which actually appears in experiments,
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as recently stressed for example in (Dubé and Stamp, 2001; Anastopoulos and
Hu, 2000; Anastopoulos, 2002). Real progress in modeling and understanding
of the phenomenon depends on a detailed description of the physical system and
of its dynamics. In this spirit in the following we will try to focus on structures of
master-equation (ME) which apply to the description of decoherence of a neutral
massive microsystem coupled to the environment due to collisions with environ-
mental particles. Many proposals have been put forward in the literature and we
will briefly outline the relationships among the different models. The Markovian
description level pertaining to these ME is certainly not the most general physical
picture, but seems appropriate to this kind of dynamics. It is of course of particular
interest to investigate how and under which conditions ME do emerge from a more
refined description of the reduced dynamics of the microsystem, as has recently
been done in (Ankerhold, 2003) with reference to the path integral approach,
where non-Markovian effects and strong coupling can be taken into account, but
the noise is essentially bound to be Gaussian.

Useful insights in the structure of the Markovian ME can be gained from the
mathematical characterization of generators of quantum dynamical semigroups
(Alicki and Fannes, 2001; Alicki, 2002a) recently given by Holevo under the
further requirement of translation invariance (TI) (Holevo, 1995, 1996). This
characterization arises from a deep analogy with the classical Lévy–Khintchine
formula for the characteristic function of a Lévy process, i.e., a stochastic process
homogeneous in space and time, thus having independent and stationary incre-
ments; it provides a more detailed description for the possible structure of the
generator of the dynamics than the Lindblad result.

The paper is organized as follows: in Section 2. we deal with different ME
for the description of decoherence induced by collisions; in Section 3. we compare
these results with the structures arising in presence of TI.

2. MODELS OF DECOHERENCE INDUCED BY COLLISIONS

A useful model for the description of decoherence was first obtained in (Joos
and Zeh, 1985)

dρ̂

dt
= − i

h
[Ĥ , ρ̂] + JZ [ρ̂] JZ [ρ̂] = −�

3∑
i=1

[x̂i , [x̂i , ρ̂]], (1)

where ρ̂ is the statistical operator associated to the microsystem and Ĥ its Hamil-
tonian which here and in the sequel we take to be that of a free particle. This ME
describes the dynamics of the center of mass of the microsystem due to scattering
with an incoming particle flux. It allows in a straightforward way for the intro-
duction of a typical decoherence time after which off-diagonal matrix elements of
the statistical operator in the position representation are heavily suppressed. It is
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in particular seen as the recoilless limit of the so-called Caldeira Leggett ME

CL [ρ̂] = −γ
2M

βh2

3∑
i=1

[x̂i , [x̂i , ρ̂]] − i

h
γ

3∑
i=1

[x̂i , {p̂i , ρ̂}], (2)

where γ is the friction coefficient, β the inverse temperature and M the mass
of the microsystem. Equation (2) is usually considered for the description of
quantum Brownian motion in the high temperature limit, which is not necessarily
always the case in experimental setups where one wants to investigate coherence
properties of the system and their washing out due to controlled or uncontrolled
coupling to the external environment. The high temperature limit is linked to the
fact that (2), in contrast with (1), cannot be cast into Lindblad form and therefore
does not preserve positivity of the time evolution. A further term of the form
−χγ

β

M

∑3
i=1[p̂i , [p̂i , ρ̂]] with χ ≥ 1

8 is necessary in order to preserve complete
positivity (Isar et al., 1994; Vacchini, 2001a), a term which due to its different
β dependence can be neglected in the high temperature limit. Different values of
the coefficient χ have appeared in different models (Diósi, 1993a,b, 1995), but
it appears that the correct value should be the minimal correction χ = 1

8 . The
friction term in (2) accounts for energy transfer and therefore thermalization of
the Brownian particle, leading to the existence of a stationary solution of the form
e−β

p̂2

2M ; though the typical time scales for decoherence and relaxation in this kind
of models may easily differ by orders of magnitude, so that thermalization takes
place on a much longer time scale, it is nevertheless of interest to consider a
possibly fully realistic description, where all physical processes can be correctly
described. In fact as has been pointed out (Ballentine, 1991; Gallis, 1991) the
ME (1) predicts a steady growth in energy for the microsystem. Shortly after the
proposal (1) another ME

GRW [ρ̂] = −λ

(
ρ̂ −

(α

π

)3/2
∫

d3s e− α
2 (x̂−s)2

ρ̂e− α
2 (x̂−s)2

)
(3)

has been introduced by Ghirardi et al. (1986), which also predicts a steady grow
in energy (though for the proposed values of the parameters α and λ the growth
is actually by orders of magnitude insignificantly small). The result (3) stands
however on a completely different footing, since it is not meant as an appropriate
description of the dynamics of a microsystem interacting with some environment,
but as a fundamental modification of Schrödinger’s equation allowing to solve the
measurement problem and can be obtained from the latter by the insertion of a
stochastic correction corresponding to white noise (for a recent review see Bassi
and Ghirardi, 2003).

The result of Joos and Zeh was later improved by Gallis and Fleming (1990),
always neglecting recoil effects. The motivation for this further work was the
observation that due to (1) the incoherent part of the time evolution induces a
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suppression of the off-diagonal matrix elements according to ∂
∂t

〈x|ρ̂|y〉 = −�|x −
y|2〈x|ρ̂|y〉, where the localization factor grows without bound for |x − y| going
to infinity. On physical grounds it is expected that such a behavior might hold at
short length-scale, i.e., small |x − y|, while for long length-scale there should be
no dependence on the spatial separation, otherwise the environment would have
to be self-correlated over an infinite length scale. This unphysical feature does not
appear in the model of quantum mechanics with spontaneous localization, in fact
according to (3) one would have

∂

∂t
〈x|ρ̂|y〉 = −λ

α

4
|x − y|2〈x|ρ̂|y〉 and

∂

∂t
〈x|ρ̂|y〉 = −λ〈x|ρ̂|y〉 (4)

for short and long length-scales respectively, so that the localization effect sat-
urates. It is to be pointed out that the quantity which actually distinguishes the
two regimes is of the form q · x̂, where q is a typical value of momentum transfer
corresponding to the relevant scattering dynamics, thus depending on details of
microsystem, environment and their interaction potential, while x̂ are the position
operators for the microsystem, thus depending on the considered matrix element.
The result obtained by Gallis and Fleming is

GF [ρ̂] =
∫

d3qd3q′ g(q)

2q4
δ(q − q ′)|f (q, q′)|2(e i

h
(q−q′)·x̂

ρ̂ e
− i

h
(q−q′)·x̂ − ρ̂

)
, (5)

with g(q) = n(q)v(q), where n(q) is the number density of scattering particles with
momentum q, v(q) their speed and f (q, q′) the scattering amplitude. Considering
the expression of GF one can check that it actually leads to results analogous
to (4). Indeed the results (5) and (1) are considered as a standard reference for
the study of decoherence, and they have been recently exploited (Alicki, 2002b;
Viale et al., 2003) in trying to quantitatively estimate decoherence in interference
experiments with fullerene molecules. In (Alicki, 2002b) the connection between
the models in (Joos and Zeh, 1985; Gallis and Fleming, 1990) and the theory of
dynamical semigroups is considered, and the ME

A[ρ̂] =
∫

d3k τ (k)
(
e

i

h
k·x̂

ρ̂ e
− i

h
k·x̂ − ρ̂

)
(6)

is proposed, where τ (k) is the density of collisions per unit time leading to a
momentum transfer k. The operator structure and the role of the momentum
transfer in its determination is here put in major evidence. This result can be easily
connected to (5) by observing that setting |f (q, q′)| = |f (q − q′)| ≡ |f (k)| one
has τ (k) ≡ |f (k)|2 ∫

d3q
2q4 g(q)δ(q − |q − k|). In both (5) and (6) only the position

operators x̂ appear, showing up in the typical expression e
i

h
q·x̂, this unitary operator

being strictly related to TI, as we shall see in Section 3.
The absence of the momentum operator in (5) and (6) indicates that neither

can describe the approach to thermal equilibrium, and in fact similar to (1) they
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both predict a steady growth in energy for the microsystem, neglecting the ef-
fect of recoil in collisions. If only small momentum transfers are of relevance, or
one assumes ρ̂ diagonal enough in position representation, the unitary operators

e
i

h
q·x̂ can be expanded up to second order, leading from (5) or (6) to (1), where

typical structures of double commutators with the position operators appear, corre-
sponding to a Gaussian, diffusive behavior. ME like (1) or (2) can all be obtained
starting from the general Lindblad structure L[ρ̂] = ∑

i[V̂i ρ̂V̂
†
i − 1

2 {V̂ †
i V̂i , ρ̂}]

and making the Ansatz: V̂i = αi p̂ + βi x̂ (Isar et al., 1994).
To cope with friction and thermalization to a suitable stationary state one has

to modify (5) or (6) in order to let the momentum operators of the microsystem p̂
appear, similar to the modification in going from (1) to (2). The correction must
be such that one has a suitable thermal stationary state and that energy of the
microsystem does not grow to infinity. A first significant step in this direction
has been done by Gallis (1993) with a phenomenological approach which always
takes as starting point the formal Lindblad structure, but rather than the previous

Ansatz assumes the more general expression V̂ (q) = α(q)e
i

h
q·x̂ + β(q)e

i

h
q·x̂q · p̂,

substituting the sum over i with an integral over the momentum q, already putting

into evidence the unitary operator e
i

h
q·x̂ which played such an important role in (5)

and (6). The result is

G[ρ̂] =
∫

d3q |α(q)|2(e i

h
q·x̂

ρ̂e
− i

h
q·x̂ − ρ̂

)

+
∫

d3q |β(q)|2
(

e
i

h
q·x̂q · p̂ ρ̂ q · p̂ e

− i

h
q·x̂ − 1

2
{(q · p̂)2, ρ̂}

)

−
∫

d3q e
i

h
q·x̂ (�[α∗(q)β(q)]{q · p̂, ρ̂} + 	[α∗(q)β(q)][q · p̂, ρ̂]

)
e
− i

h
q·x̂

,

and under certain restrictions on the phenomenological functions α(q) and β(q)
does in fact predict relaxation to thermal equilibrium. Further work in this direction
has been done by Diósi (1995) starting from an analogy with the classical linear
Boltzmann equation. He tried to connect similar structures of ME, in which both
position and momentum operator of the microsystem appear, to an underlying
dynamics in terms of collisions obtaining the result

D[ρ̂] = nm3

µ5

∫
d3qd3 q′ δ(E(q) − E(q ′))|f (q, q′)|2

(
V̂ ρ̂V̂ † − 1

2
{V̂ †V̂ , ρ̂}

)
(7)

with V̂ = √
σ (q + m

M
(p̂ + q))e

i

h
(q−q′)·x̂, M mass of the microsystem, m the mass

of the gas particles, µ the reduced mass, n the gas density, E(q) = q2

2M
and σ

the momentum distribution of the gas particles. If σ is given by a Boltzmann

distribution an operator of the form e−β
p̂2

2M is a stationary solution of (7). A general
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result for a ME describing the motion of a particle interacting through collisions
with some surrounding environment has been recently obtained starting from a
scattering theory derivation (Vacchini, 2000, 2001a,b, 2002a; Lanz and Vacchini,
2002). The result relies on the appearance of a two-point correlation function
known as dynamic structure factor, operator valued due to its dependence on the
momentum operators of the microsystem. The dynamic structure factor obeys
the detailed balance condition and therefore grants the existence of the expected
stationary solution on very general grounds. The ME is

V [ρ̂]= (2π )4h2n

∫
d3 q |t̃(q)|2

[
e

i

h
q·x̂√

S(q, p̂)ρ̂
√

S(q, p̂)e− i

h
q·x̂

− 1

2
{S(q, p̂), ρ̂}

]
,

with t̃(q) Fourier transform of the T-matrix describing the microphysical collisions
and S(q, p) the positive two-point correlation function

S(q, E) = 1

2πh

∫
dt

∫
d3x e

i

h
[E(q,p)t−q·x] 1

N

∫
d3y 〈N (y)N (y + x, t)〉

with S(q, p) ≡ S(q, E), E(q, p) = (p+q)2

2M
− p2

2M
, q and E being momentum and

energy transfer, while N (y) is the particle density operator in the environment.

3. COVARIANCE PROPERTIES

The validity of a ME for the description of the reduced dynamics of a mi-
crosystem interacting with some environment ultimately rests on how realistic the
environment and its coupling to the quantum system of interest have been de-
scribed and how severe the approximations allowing for the derivation of the ME
for the reduced system actually are. It is nevertheless of interest, and of guidance
in determining equations giving the time evolution of the statistical operator, to
check whether some general features, which should be common to any dynamical
evolution, are actually present. Among these features one has preservation of trace
and positivity of the statistical operator; complete positivity which emerges as
a typical feature of quantum mechanics related to the non commutativity of the
algebra of observables (Holevo, 2001); preservation of typical symmetries of the
environment such as homogeneity (Kohen et al., 1997) and in general invariance
under the action of a group expressing some symmetry of the whole physical
system; existence and uniqueness of a suitable stationary state with a canonical
structure; correct description of the time evolution of the observables relevant to
the dynamics, such as energy.

The most widespread approach is to start from or compare with the Lindblad
structure of a ME, both in presence of bounded and unbounded operators, so



1018 Vacchini

that complete positivity and therefore in particular positivity is granted, and the
same goes for preservation of the trace. In the case in which the physical system
is characterized by some non trivial symmetry group however, one can rely on
more recent and refined results than the one by Lindblad. The possible structures
of generators of quantum dynamical semigroups covariant under the action of
a symmetry group have been characterized in particular in the case of the two
Abelian Lie groups R and U (1) (Holevo, 1995, 1996), also taking care of defining
a suitable domain in the case in which the relevant operators are unbounded.

Since we are focusing on structures of ME describing the loss of coherence
of a microsystem interacting through collisions with a homogeneous environment,
we will consider in some detail only the structure of the generator of a TI quantum
dynamical semigroup. This result has been settled by Holevo and gives a non-
commutative quantum generalization of the Lévy–Khintchine formula. In the
following we will try to briefly summarize Holevo’s results.

Let us first consider the case of a norm-continuous conservative quantum
dynamical semigroup {t ; t ≥ 0} acting on the algebra of bounded operators in
L2(R3), whose generator L is a completely dissipative map satisfying

d

dt
t [X̂] = L[t [X̂]] X ∈ B(L2(R3)) t ≥ 0 (8)

with 0[X̂] = X̂ and t [Î ] = Î due to conservativity, i.e., trace preservation. If
t is norm-continuous the generator L admits a standard representation

L[X̂] = i

h
[Ĥ , ρ̂] + �[X̂] − 1

2
{�[Î ], X̂} X̂ ∈ B(L2(R3)) (9)

with � a normal completely positive map and Ĥ self-adjoint. The semigroup is

said to be covariant under the action of a unitary representation Û (a) = e
i

h
a·x̂p̂,

a ∈ R3 of the group of translations, i.e., translation-covariant, provided

t [Û
†(a)X̂Û (a)] = Û †(a)t [X̂]Û (a) X̂ ∈ B(L2(R3)) a ∈ R3 t ≥ 0 (10)

holds. If L is covariant in the sense of (10) in the decomposition (9) the map �

can always be chosen covariant and Ĥ commuting with the unitary representation
Û (q). Under the restriction (10) the general structure of the bounded generator of
the semigroup in (8) is in fact given by

L[X̂] = i

h
[H (p̂), X̂]

+
∫ ∞∑

j=1

[
L
†
j (q, p̂)Û †(q)X̂Û (q)Lj (q, p̂)

− 1

2
{L†

j (q, p̂)Lj (q, p̂), X̂}
]
dµ(q) (11)
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where Û (q) = e
i
h

q·x̂, H (·) = H ∗(·), Lj (q, ·) are bounded functions, µ(q) is a
positive σ -finite measure on R3 and

∫ ∑∞
j=1 |Lj (q, ·)|2dµ(q) < +∞.

In the case in which the family of maps {t ; t ≥ 0} acting on B(L2(R3)) are
generally unbounded it is convenient to consider the equation

d

dt
〈φ|t [X̂]ψ〉 = L(φ; t [X̂]; ψ) X̂ ∈ B(L2(R3)) t ≥ 0

with 0[X̂] = X̂, t [Î ] = Î and φ,ψ ∈ D ⊂ L2(R3), where D is some dense
domain. The expression L(φ; X̂; ψ) is the so-called form-generator, i.e., a func-
tion of φ,ψ ∈ D ⊂ L2(R3) and X̂ ∈ B(L2(R3)) characterized by the following
basic properties: (1) L(φ; X̂; ψ) is linear in X̂ and ψ , anti-linear in φ and such
that L∗(φ; X̂; ψ) = L(ψ ; X̂†; φ); (2) for all finite subsets {ψj } ∈ D ⊂ L2(R3) and
{X̂j } ∈ B(L2(R3)) such that

∑
j X̂jψj = 0 one has

∑
jk L(ψj ; X̂†

j X̂k; ψk) ≥ 0

(conditional complete positivity); (3) L(φ; Î ; ψ) = 0 ∀φ,ψ ∈ D ⊂ L2(R3) (con-
servativity); together with suitable continuity properties. The form-generator also
admits a standard representation

L(φ; X̂; ψ) =
∑

j

〈L̂jφ|X̂L̂jψ〉

− 〈K̂φ|X̂ψ〉 − 〈φ|X̂K̂ψ〉 φ,ψ ∈ D, X̂ ∈ B(L2(R3))

with K̂ and L̂j densely defined operators. The covariance condition analogous
to (10) is now expressed by L(φ; Û †(â)X̂Û (â); ψ) = L(Û (â)φ; X̂; Û †(â)ψ), to-
gether with the invariance of the domain D under the unitary representation.
It is however no longer possible to put into evidence an Hamiltonian con-
tribution commuting with the unitary representation and a completely posi-
tive map. Taking as domain the space of twice continuously differentiable
functions with compact support in the momentum representation of the CCR,
i.e., D = C2

0 (R3), and asking for suitable continuity properties the general
structure of the TI form-generator is given by L = LG + LP, where LG is
the Gaussian, continuous component corresponding to the formal operator
expression

LG[X̂] = i

h
[ŷ0 + H (p̂), X̂] +

3∑
k=1

(ŷk + Lk(p̂))† X̂ (ŷk + Lk(p̂)) − K̂†X̂ − X̂K̂

K = 1

2

r∑
k=1

(
ŷ2

k + 2ŷkLk(p̂) + L
†
k(p̂)Lk(p̂)

)
(12)



1020 Vacchini

with ŷk = ∑3
i=1 aki x̂i , k = 0, . . . , 3, aki ∈ R, H (·) = H ∗(·) ∈ L2

loc(R3) and
|Lk(·)|2 ∈ L2

loc(R3), while LP is the Poisson, jump component

LP[X̂] =
∫ ∞∑

j=1

[
L
†
j (q, p̂)Û †(q)X̂Û (q)Lj (q, p̂)

− 1

2
{L†

j (q, p̂)Lj (q, p̂), X̂}
]
dµ(q)

+
∫ ∞∑

j=1

[ωj (q)L†
j (q, p̂)(Û †(q)X̂Û (q) − X̂)

+ (Û †(q)X̂Û (q) − X̂)Lj (q, )̂ω∗
j (q)]dµ(q)

+
∫ ∞∑

j=1

[
Û †(q)X̂Û (q) − X̂ − i

[X̂, x̂y · q]

1 + |q|2
]

|ωj (q)|2dµ(q) (13)

with µ(q) a positive σ -finite measure on R3, ωj (q) complex measurable func-
tions and the further conditions

∫ |q|2/(1 + |q|2)
∑∞

j=1 |ωj (q)|2dµ(q) < +∞ and∫ ∑∞
j=1 |Lj (q, ·)|2dµ(q) ∈ L2

loc(R
3), Eqs. (12) and (13) giving a non-commutative

quantum generalization of the Lévy–Khintchine formula. Despite appearance the
result can still be cast in Lindblad form.

All the ME for the statistical operator considered in the previous section can
be formally compared to the pre-adjoint of the maps given in (11) or (12) and (13),
with suitable choices of parameters and functions (Vacchini, 2001a, 2002b). One
thus sees that not all the ME proposed in Section 2. are proper generators of
quantum dynamical semigroups, as already mentioned in connection with the
property of complete positivity. In particular one can now clearly distinguish
between Gaussian and Poisson components. Equations (12) and (13) also give
some hints about the possible structures of the ME for a microsystem interacting
with a homogeneous environment which might be derived in future research
work, starting form detailed physical models. Of course the case of a microsystem
interacting through collisions with a TI bath is just one of the possible physical
models interesting for the study of decoherence, another most important example is
the interaction of a charged particle with the electromagnetic field and the related
phenomenon of decoherence due to Bremsstrahlung (Breuer and Petruccione,
2001).

Note added. After completion of the first version of the manuscript, further
work deserving attention has been done on the subject (Dodd and Halliwell, 2003;
Hornberger and Sipe, 2003), though from a different standpoint.
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